Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Plant Sci ; 14: 1138089, 2023.
Article in English | MEDLINE | ID: covidwho-2288147

ABSTRACT

Plants have recently received much attention as a means of producing recombinant proteins because they are easy to grow at a low cost and at a large scale. Although many plant protein expression systems have been developed, there remains a need for improved systems that deliver high yields of recombinant proteins. Transcription of the recombinant gene is a key step in increasing the yield of recombinant proteins. However, revealed strong promoters, terminators, and transcription factors that have been identified do not necessarily lead to high level production of recombinant proteins. Thus, in this study, a robust expression system was designed to produce high levels of recombinant protein consisting of a novel hybrid promoter, FM'M-UD, coupled with an artificial terminator, 3PRt. FM'M-UD contained fragments from three viral promoters (the promoters of Mirabilis mosaic caulimovirus (MMV) full-length transcript, the MMV subgenomic transcript, and figwort mosaic virus subgenomic transcript) and two types of cis-acting elements (four GAL4 binding sites and two zinc finger binding sites). The artificial terminator, 3PRt, consisted of the PINII and 35S terminators plus RB7, a matrix attachment region. The FM'M-UD promoter increased protein levels of reporters GFP, RBD : SD1 (part of S protein from SARS-CoV-2), and human interleukin-6 (hIL6) by 4-6-fold, 2-fold, and 6-fold, respectively, relative to those of the same reporters driven by the CaMV 35S promoter. Furthermore, when the FM'M-UD/3PRt expression cassette was expressed together with GAL4/TAC3d2, an artificial transcription factor that bound the GAL4 binding sites in FM'M-UD, levels of hIL6 increased by 10.7-fold, relative to those obtained from the CaMV 35S promoter plus the RD29B terminator. Thus, this novel expression system led to the production of a large amount of recombinant protein in plants.

2.
Antiviral Res ; 212: 105558, 2023 04.
Article in English | MEDLINE | ID: covidwho-2246444

ABSTRACT

Coronavirus disease 2019 (COVID-19) outbreak has become a global pandemic. CDK4/6 inhibitor palbociclib was reported to be one of the top-scored repurposed drugs to treat COVID-19. As the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry, expression level of angiotensin-converting enzyme 2 (ACE2) is closely related to SARS-CoV-2 infection. In this study, we demonstrated that palbociclib and other methods could arrest cells in G0/G1 phase and up-regulate ACE2 mRNA and protein levels without altering its subcellular localization. Palbociclib inhibited ubiquitin-proteasome and lysosomal degradation of ACE2 through down-regulating S-phase kinase-associated protein 2 (SKP2). In addition, increased ACE2 expression induced by palbociclib and other cell cycle arresting compounds facilitated pseudotyped SARS-CoV-2 infection. This study suggested that ACE2 expression was down-regulated in proliferating cells. Cell cycle arresting compounds could increase ACE2 expression and facilitate SARS-CoV-2 cell entry, which may not be suitable therapeutic agents for the treatment of SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/metabolism , Cyclin-Dependent Kinase 4/metabolism , Peptidyl-Dipeptidase A/metabolism , S-Phase Kinase-Associated Proteins , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Cyclin-Dependent Kinase 6/metabolism
3.
Plant Biotechnol J ; 20(12): 2298-2312, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2019572

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has spurred rapid development of vaccines as part of the public health response. However, the general strategy used to construct recombinant trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) proteins in mammalian cells is not completely adaptive to molecular farming. Therefore, we generated several constructs of recombinant S proteins for high expression in Nicotiana benthamiana. Intramuscular injection of N. benthamiana-expressed Sct vaccine (NSct Vac) into Balb/c mice elicited both humoral and cellular immune responses, and booster doses increased neutralizing antibody titres. In human angiotensin-converting enzyme knock-in mice, two doses of NSct Vac induced anti-S and neutralizing antibodies, which cross-neutralized Alpha, Beta, Delta and Omicron variants. Survival rates after lethal challenge with SARS-CoV-2 were up to 80%, without significant body weight loss, and viral titres in lung tissue fell rapidly, with no infectious virus detectable at 7-day post-infection. Thus, plant-derived NSct Vac could be a candidate COVID-19 vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Mice , Animals , Humans , Nicotiana/genetics , SARS-CoV-2 , COVID-19/prevention & control , Adjuvants, Immunologic , Mice, Inbred BALB C , Antibodies, Neutralizing , Immunity , Mammals
4.
Infect Dis Poverty ; 9(1): 82, 2020 Jul 02.
Article in English | MEDLINE | ID: covidwho-621510

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the outbreak of pneumonia in Wuhan. The virus is highly infectious. Patients with cancer might be susceptible to the viral infection because of the immunosuppressive state cause by therapies on tumors. CASE PRESENTATION: We present the clinical features of four cancer patients who were infected with SARS-CoV-2 in late January of 2020 in our hospital. Cases 1 and 3 were diagnosed as mild and common type of coronavirus disease 2019 (COVID-2019) and survived from the viral infection. They acquired SARS-CoV-2 infection during their staying in hospital under radiotherapy and surgery of the tumors. Cases 2 and 4 suffered from severe type of COVID-19, and Case 2 was dead owning to the advanced age, uncontrolled chronic B cell lymphocytic leukemia and many other underlying diseases. The immunosuppressive state induced by liver transplantation and anti-rejection therapy might contribute to the severity of COVID-19 in Case 4, who suffered from hepatitis B related hepatocellular carcinoma. However, Case 4 was recovered from COVID-19 after a combination therapy against virus, bacteria and fungi, and also respiratory support. Nearly all patients showed a decrease in lymphocytes including total CD3+ T cells, B cells, and natural killer cells after infection of the virus. CONCLUSIONS: The severity of COVID-19 might be influenced by immune system state and underlying diseases in cancer patients. And the treatment of SARS-CoV-2 infection in cancer patients is challenged by the immunosuppressive state of these patients under chemotherapy or surgery.


Subject(s)
Betacoronavirus , Coronavirus Infections , Neoplasms/complications , Pandemics , Pneumonia, Viral , Adult , Aged , COVID-19 , China , Coronavirus Infections/complications , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/physiopathology , Fatal Outcome , Female , Humans , Immunocompromised Host , Lung/diagnostic imaging , Lung/pathology , Male , Middle Aged , Neoplasms/physiopathology , Neoplasms/therapy , Pneumonia, Viral/complications , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/physiopathology , Radiography, Thoracic , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL